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Coefficient scaling
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We prove a remarkably simple but powerful recursion relation for the coefficients of iterated polynomials.
We also prove that the recursion relation holds for the coefficients of certain functions of the iterated polyno-
mial. Using the recursion relations, we obtain a closed-form expression for the average number of closed-loop
self-avoiding walks per site on a family of fractal lattices. We describe numerical results, which exhibit
log-periodic oscillations, and find good agreement between these results and the theory developed here, which
predicts the existence of the log-periodic oscillations and their amplitudes. Finally, we discuss insights gained
into the mathematical origins of critical phenomena.@S1063-651X~99!10704-9#

PACS number~s!: 64.60.Ak, 61.43.Hv, 05.70.Jk, 02.10.Eb
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I. INTRODUCTION

Recursion relations involving polynomials or ration
functions play a major role in a number of branches of ph
ics. In many cases, the function involved is the renormali
tion group transformation applicable to the system being
vestigated@1#. Usually this function is linearized around
fixed point xc and the recursion relation is then applied
this linearized equation. In doing this, information which
needed to calculate the amplitudes of the quantities exh
ing critical behavior is lost. Also there are situations in whi
the linearization results in unphysical divergences.

We have discovered and proven a recursion relation
the coefficients of iterated polynomials. Using this recurs
relation, we formulate an approach to calculating physi
observables which exhibit critical behavior; the approa
employs the coefficients of the renormalization group tra
formation function as opposed to the function itself. Th
approach has no divergences and allows the amplitude
the critical quantities to be calculated straightforwardly.

In Sec. VI, we use this technique to study the critic
behavior of pn , the average number of closed-loop se
avoiding walks per site on the family of Sierpinski gaske

Finally, we discuss how the properties of polynomials c
be used to understand the mathematical origins of crit
phenomena.

II. RECURSION RELATION

Consider a polynomial of degree,1,

F~x!5(
n

anxn, ~2.1!

with non-negative coefficients, with fixed pointxc.0, de-
fined by F(xc)5xc , connectivity constant,m[1/xc , and
corresponding eigenvalue

*Present address: Center for Polymer Studies & Departmen
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.1.

We define therth iteration ofF(x) as

F ~r !~x![( an
~r !xn[F„F ~r 21!~x!…. ~2.2!

We will prove that for larger,

an
~r !

mn 5
1

l

an/l
~r 21!

mn/l . ~2.3!

We call this property coefficient scaling. In what follows w
will refer to the coefficients of a polynomial divided bymn

as normalized coefficients. Whenn/l is not an integer,an/l
will be understood to be an interpolated value. Also, ifF(x)
is a function odd or even inx, the recursion relation is un
derstood to apply to the nonzero odd or even terms
F (r )(x).

A. Approach

The proof will proceed by~i! deriving a closed-form ex-
pression for the derivatives ofF (r )(x) at xc , ~ii ! deriving a
closed-form expression for thejth moment of the normalized
coefficients, and~iii ! showing that the corresponding mo
ments of the normalized coefficients,pn

(r )[an
(r )/mn andqn

(r )

[l21an/l
(r 21)/mn/l, are equal.

B. Behavior of jth derivative

Using the chain rule of differentiation, we see that

l~r ![
d

dx
„F ~r !~x!…U

xc

5l
d

dx
„F ~r 21!~x!…U

xc

and then by induction that

l~r !5l r .

Similarly,

of
s:
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s~r ![
d2

dx2 F ~r !~x!U
xc

5
d

dx FF„F ~r 21!~x!…
d

dx
„F ~r 21!~x!…GU

xc

5sl2~r 21!1l
d2

dx2 „F
~r 21!~x!…,

wheres[d2F(x)/dx2, and by induction,

s~x!5sl2r (
n52

r 21

l2n5sl2r
~12l22r !

l~l21!
.

Sinceulu.1, we have, for larger,

s~r !5
sl2r

l~l21!
.

Proceeding as before, we have, after some algebra,

t~r ![
d3

dx3 F ~r !~x!U
xc

5tl3~r 21!1
3s2l2~r 21!

~l21!l
1lt~r 21!,

wheret[d3F(x)/dx3. For larger, we can ignore the secon
term and this recursion relation simplifies to

t~r !5tl3~r 21!1lt~r 21!.

By induction,

t~r !5tl3r~l231l251l271 !5k3l3r ,

wherek3 is a constant the value of which will not be impo
tant to us.

Looking at the structure of the equations above, we
that for arbitraryj,

dj

dxj „F
~r !~x!…U

xc

5F dj

dxj ~F~x!!GU
xc

l j ~r 21!

1O„l~ j 21!~r 21!
…1l

dj

dxj „F
~r 21!~x!…U

xc

.

Ignoring the terms of lower order inl, we have by induction,

dj

dxj „F
~r !~x!…U

xc

5kjl
j r , ~2.4!

where thekj are constants.
This intermediate result in the proof is interesting in

own right. If we define

D~r , j ![S dj

dxj
DF ~r !~x!U

xc

,

we see thatD(r , j ) scales in the sense that

D~ar ,b j !5~D~r , j !!ab.

C. Behavior of the jth moment

We denote thejth moment of the normalized coefficien
an /mn of F as defined in Eq.~2.1! as
e

M j~F !5(
n

nj
an

mn .

We will show that for larger and polynomials for which
ulu.1,

M j~F ~r !!5xc
j dj

dxj „F
~r !~x!…U

xc

. ~2.5!

Consider

dj

dxj „F
~r !~x!…U

xc

5 (
n50

amax
~r !

@n~n21!~n22!...~n2 j 11!#an
~r !xc

n2 j

5xc
2 j (

n50

amax
~r !

@n~n21!~n22!...~n2 j 11!#an
~r !xc

n

5xc
2 j@M j~F ~r !!1O„Mk, j~F ~r !!…#.

Using Eq.~2.4!, we have

M j~F ~r !!5kj~xcl
r ! j2O„Mk, j~F ~r !!…]. ~2.6!

For j 51, there are no moments of lower order thanj in Eq.
~2.6! so we can ignore the last term.

We can then proceed by induction and, for each succ
sive j, ignore the terms containing moments of lower order
j because they will be proportional to lower-order deriv
tives. Thus, for allj,

M j~F ~r !!5xc
j dj

dxj „F
~r !~x!…U

xc

5kj~xcl
r ! j . ~2.7!

D. Proof of recursion relation by equating moments

The last step of the proof is to show that all moments

pn
~r ![

an
~r !

mn

are equal to the respective moments of

qn
~r ![

1

l

an/l
~r 21!

mn/l .

As noted earlier, ifF(x) is odd or even inx, it is understood
that we are proving the equality for the odd or even term
This, the requirement that all coefficients ofF(x) are non-
negative, and the requirement that the degree ofF is greater
than 1 ensures thatpn

(r ) andqn
(r ) are smoothly varying func-

tions of n. Consider thejth moment ofq(r ),

M j~q~r !!5(
n

nj
1

l

an/l
~r 21!

mn/l .

Substitutingm5n/l yields
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M j~q~r !!5
1

l (
m50/l,1/l,...

~ml! j
am

~r 21!

mm .

Because the function being summed over is smooth, we
keep only 1/l of the terms and multiply byl. Then,

M j~q~r !!5(
m

~ml! j
am

~r 21!

mm 5l jM j~p~r 21!!.

Using Eq.~2.7!, we have

FIG. 1. The normalized coefficientsan
(r ) for iterations ofF(x)

5x21x3 for r 52 – 5.
an

M j~q~r !!5l j kj~xcl
r 21! j5kj~xcl

r ! j5M j~p~r !!.

Thus we have shown that the respective moments of the
functionspn

(r ) andqn
(r ) are equal and, therefore, the functio

are equal. That is,

an
~r !

mn 5
1

l

an/l
~r 21!

mn/l .

Defining an
(r )5an

(r )/mn, we have by induction forr 0,r ,

an
~r !5S 1

l D r 2r 0

a
n/lr 2r 0

~r 2r 0!
, ~2.8!

which we will use in Sec. VI.
In Appendix A, we discuss the rate of convergence of

recursion relation.

III. EXAMPLES

In Figs. 1–3, for some simple functions, we plot the no
malized coefficientsan

(r )/mn for multiple r. We see that each
succeeding plot is lowered in height by 1/l and stretched by
a factor ofl; the ‘‘area under the curve’’ stays constant. A
we will see below, this simple geometric property of an ite
ated polynomial when the polynomial is the renormalizati
group transformation function explains the exponential
FIG. 2. The normalized coefficientsan
(r ) for iterations ofF(x)5(11x2)/4 for r 53 – 8.
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FIG. 3. The normalized coefficientsan
(r ) for iterations ofF(x)5(110.5x1x2)/4 for r 52 – 7.
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havior and log periodic oscillations of critical phenomena
The fact that the area under the curve stays constant h

be the case since

(
n

an
~r !

mn 5xc

is true for all r, not just for r 50, in which case it is the
definition of the fixed point. For higherr, the equation is a
sum rule, which constrains the normalized coefficients. T
proof of this sum rule is given in Appendix B where w
prove a more general sum rule for the normalized coe
cients of rational functions of which polynomials are a sp
cial case.

IV. SCALING PROPERTIES OF POLYNOMIALS
OF POLYNOMIALS

In this section we will show that if the coefficients ofF (r )

scale as in Eq.~2.3!, then the coefficients of polynomials o
F (r ) also scale in accordance with Eq.~2.3!. That is, ifH is a
polynomial,

H~x![(
n

hnxn

and
to

e

-
-

P~x![H„F~x!…[(
n

pnxn

P~r !~x![H„F ~r !~x!…[(
n

pn
~r !xn;

then,

pn
~r !

mn 5
1

l

pn/l
~r 21!

mn/l . ~4.1!

To prove this, we first show that ifF (r 11) andG(r 11) are two
polynomials whose coefficients obey Eq.~2.3!, then the co-
efficients of„F(x)G(x)…(r ) obey Eq.~2.3!. That is, if

W~x![F~x!G~x![(
n

wnxn,

W~r !~x![F ~r !~x!G~r !~x![(
n

wmax
~r ! wn

~r !xn;

then,

wn
~r !

mn 5
1

l

wn/l
~r 21!

mn/l . ~4.2!
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Now,

wn
~r !5(

i
f i

~r !gn2 i
~r ! 5mn(

i

f i
~r !

m i

gn2 i
~r !

mn2 i

5mn
1

l2 (
i

f i /l
~r 21!

m i /l

g~n2 i !/l
~r 21!

m~n2 i !/l .

Substitutingj 5 i /l, we have

wn
~r !5mn

1

l2

1

mn/l (
j 50/l,1/l...

f j
~21!gn/l2 j

~21! .

Knowing that the polynomials are smooth, we can conv
the sum to a sum over integers by keeping only 1/l of the
terms and multiplying byl. Then,

wn
~r !5mn

1

l

1

mn/l (
j

f j
~r 21!gn/l2 j

~r 21! 5mn
1

l

wn/l
~r 21!

mn/l ,

which proves Eq.~4.2!. The proof of Eq.~4.1! follows di-
rectly. By induction, from Eq.~4.2!, powers of a function
that scale as in Eq.~2.3! also scale as in Eq.~2.3!. Clearly,
multiplication of a function by a constant maintains Eq.~2.3!
and sums of products that satisfy Eq.~2.3! also satisfy Eq.
~2.3!. Therefore polynomials of functions that satisfy E
~2.3! also satisfy Eq.~2.3! and Eq.~4.1! is proven.

V. IMPROVED APPROXIMATION TO F „r …
„x…

We can use the coefficient scaling relation to derive
better approximation than the linear one toF (r )(x) nearxc .
Using Eq.~2.3!, we have

F ~r !~x!5
1

l (
n

mn

mn/l an/l
~r 21!xn.

Letting m[n/l, we have

F ~r !~x!5
1

l (
m50/l,1/l,2/l,...

S ~mx!l

m D m

am
~r 21! .

For x nearxc , the summand is slowly varying and we ca
convert the sum to a sum over integers by keeping onlyl
of the terms and multiplying byl. We then have

F ~r !~x!5(
m

S ~mx!l

m D m

am
~r 21!5F ~r 21!S ~mx!l

m D .

Defining

f ~x!5
~mx!l

m
, ~5.1!

we have by induction

F ~r !~x!5 f ~r !~x!5
~mx!lr

m
. ~5.2!

At x5xc , f (r )(x)5xc as it should and the eigenvalue of th
approximation is stilll. We note that if we desire a mono
mial approximation toF(x), which has fixed pointxc and
rt

a

eigenvaluel, our approximation is unique. Also, the ap
proximation has derivatives as in Eq.~2.4!. We also note that
this approximation is not valid forx,0 where for noninteger
l the results are not real. This approximation is a signific
improvement over the linear approximation as seen in Fig

VI. APPLICATION TO CRITICAL PHENOMENA

A. Closed-form solution

We will apply coefficient scaling to the statistics of se
avoiding walks on a family of fractals. In particular, we wi
study the statistics of the average number of closed loops
site on the family of Sierpinski gaskets characterized by
length b of the side of the generating figure. Usin
renormalization-group theory, this family of fractals h
been analyzed by Dhar@2# for b52 and for higherb by
Elezovićet al. @3# to calculate critical points and critical ex
ponents. We will use coefficient scaling to show how ad
tionally the amplitudes can be calculated.

From @3#, the average number of closed loops of lengthn
per site, is given by the coefficientspb,n of Pb(x), where

Pb~x!5(
r 50

` Gb„Tb
~r !~x!…

~kb!r 11 5(
r 50

`

pb,nxn, ~6.1!

wherekb5b(b11)/2, Gb is a polynomial of degreekb , Tb
is the renormalization-group transformation function for t
system and is a polynomial of degreekb with fixed point

FIG. 4. Comparison ofF(x)5x21x3, its best monomial ap-
proximation f (x), and its linear approximationF linear, near x
5xc . As shown in~a!, nearxc , F(x) and f (x) are basically coin-
cident. In~b!, for largerux2xcu, F(x) and f (x) diverge butf (x) is
still a significantly better approximation thanF linear, which would
be coincident with thex axis, if plotted.
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xc,b , connectivity constantmb51/xc,b and eigenvaluelb ,
andTb

(r )5Tb(Tb
(r 21)). For simplicity, theb subscripts will

be understood in what follows.
We then have

pn5S (
r 50

`
G„T~r !~x!…

kr 11 D
n

5(
r 50

`
„G„T~r !~x!……n

kr 11 , ~6.2!

where„F(x)…n denotes thenth coefficient ofF(x).
Choosing an integer,r 0.1, such that Eq.~2.8! holds, we

separate the sum into two parts:

pn5 (
r 50

r 021
„G~T~r !!…n

kr 11 1 (
r 5r 0

`
„G~T~r !!…n

kr 11 .

SinceG andT are polynomials of degreek, the maximumn
to which the first sum can contribute isn05kr 0. Thus, for
n.n0 , we can drop the first sum. Then, defining

Gn5
Gn

mn , ~6.3a!

pn5
pn

mn , ~6.3b!

and using Eq.~2.8!, we have

pn5 (
r 5r 0

` S 1

l D r 2r 0
„Ḡ~T~r 0!!…n/lr 2r 0

kr 11 .

We will follow the approach of Derrida, DeSeze, and Itzy
son @4# in analyzing a function of the form of Eq.~6.2! but
we will analyze the coefficients as opposed to the functi
Thus we perform a Mellin transform onpn yielding

m~s!5E
0

`

ns21pndn

5E
0

`

ns21(
r 50

` S 1

l D r 2r 0
„Ḡ~T~r 0!!…n/lr 2r 0

kr 11 dn.

Substitutingn for n/l r 2r 0 for eachr we have,

m~s!5~l r 0!12sE
0

`

„Ḡ~T~r 0!!…nns21 (
r 5r 0

`
~ls21!r

kr 11 dn.

~6.4!

The sum can be performed exactly and we have

m~s!5
1

kr 021 E
0

`
„Ḡ~T~r 0!!…n
k2ls21 ns21dn5

1

kr 021

G! ~s!

k2ls21 ,

where we’ve defined

G! ~s!5E
0

`

„Ḡ~T~r 0!!…nns21dn. ~6.5!

Taking the inverse Mellin transform, we have
.

pn5
1

2p i E2 i`

1 i`

m~s!
1

ns ds5
1

2p ikr 021 E
2 i`

1 i` G! ~s!

k2ls21 ds.

The integrand has poles at

s5
ln~k!

ln~l!
111

2p im

ln~l!
5a1mbi, m50,61,62,63,

where

a[
ln~k!

ln~l!
11, c[

2p

ln~l!
.

Using the residue theorem to evaluate the integral and u
Eq. ~6.3b!, we have

pn5mn (
m52`

`
1

n~a1mci!

G! ~a1mci!

kr 021k ln~l!

5mnn2a (
m52`

`

e22p im@ ln~n!/ ln~l!#
G! ~a1mci!

kr 021k ln~l!
. ~6.6!

The amplitudes of the Fourier contributions to the norm
ized coefficients are then

Am5
G! ~a1mci!

kr 021k ln@l#
. ~6.7!

The conventional representation forpn is

pn5mnna23~constant1correction terms!.

Comparing with Eq.~6.6!, we find a522 ln(k)ln(l), which
is consistent with earlier work@2,3#. In Appendix C, we de-
rive the formula corresponding to Eq.~6.6! for P(x).

We note that, while we are addressing the statistics
self-avoiding walks on fractals, Eqs.~6.6! and~6.7! apply to
any observable represented by Eq.~6.1!, as long asG! (s) is
analytic within the contour of integration. If it is not, Eqs
~6.6! and ~6.7! must be modified to take this into accoun
For the system we are studying, sinceG and T are polyno-
mials,G! (s) is well behaved in the contour of integration.

B. Theoretical values for the amplitudes

The theoretical values of the amplitudes, Eq.~6.7!, are
obtained by calculating (T(r 0))n recursively, calculating the
coefficients ofḠ(T(r 0)), creating an interpolated functio
from the coefficients, and then integrating the interpola
function in accordance with Eq.~6.5!. The results are shown
in Table I.

C. Numerical results

Numerical results were obtained by recursively calcul
ing the coefficients ofT(r ) and then calculating the coeffi
cients of Ḡ(T(r )) for eachr and summing the results. Th
calculations were performed on a personal computer wit
233-MHz Pentium processor and 32 megabytes of mem
and were accomplished on the order of minutes to hours.
obtained numerical results forpn for b52 – 4. The results are
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TABLE I. Theoretical and measured values for the amplitudesAm of the Fourier transform component
of pn , the average number of closed-loop self-avoiding walks on the Sierpinski gasket with length of sb,
for b52 – 4. The value ofr used in the theoretical calculation isr 0 ; r m is the number of iterations that wer
used to generate the sequence of self-avoiding walks, the amplitudes of which were measured.

b Result type
r 0

r m

Longest
walk

Amplitudes

A0 A1 A2 A3 A4 A5

2 Theory r 054 81 .3656 .2036 .030 67 .002 052 .000 7960 .000 287
measured r m514 49 152 .3657 .1951 .026 59 .001 457 .000 3873 .000 10

3 Theory r 053 216 .4339 .1312 .1447 .060 02 .007 753 .004 958
measured r m59 59 049 .4180 .1236 .1319 .051 50 .006 985 .004 213

4 Theory r 052 100 .4661 .1413 .1185 .071 72 .063 28 .024 58
measured r m56 12 288 .4304 .1244 .1050 .062 94 .046 26 .015 65
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shown in Figs. 5 and 6. Note the well-defined periodic os
lations and the subminima and submaxima indicating sign
cant higher harmonics forb53 – 4. To obtain the amplitudes
we then created an interpolated function frompn and per-
formed a Fourier transform on the last period of the functi
The results are shown in Table I.

D. Comparison of theory with numerical results

Table I compares the theoretical values obtained using
lowest reasonabler 0 with the values obtained from the long
est calculation ofpn . We see that we get good agreeme
between the theoretical values and numerical values for
amplitudes even thoughr 0 is considerably lower than th
value ofr used to calculate the amplitudes numerically. Al
we see that, while the amplitudes drop off in magnitu
quickly for b52, higher Fourier components are significa
for b53 and 4, where the higher harmonics are present.

VII. MATHEMATICAL ORIGINS OF CRITICAL
PHENOMENA

If we review the derivation of Eqs.~6.6! and ~6.7! we
realize that the general form depended on two facts:~a! the
well-known form for the sum of a geometric series

(
n50

m

an5
12am11

12a

used to evaluate Eq.~6.4!, which led to the poles inm(s) and
the corresponding exponential behavior, and~b! the scaling
of the polynomial coefficients, which allowed the sum in E
~6.2! to be converted into a geometric series and which is
source of themn factor.

Thus, at least for systems which have polynom
renormalization-group transformations and physical obse
ables that are, or can be approximated by, sums of poly
mials of iterations of the renormalization-group transform
tion, we can now understand that the critical behavior
directly related to the recursion relations for the coefficie
of the iterated polynomial. Thus, for the class of systems
have described, critical behavior is a direct manifestation
the mathematical properties of iterated polynomials.

We believe that recursion relations similar to those
polynomials hold for the coefficients of the numerator a
-
-

.

e

t
he

e
t

.
e
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-
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r

denominator in rational functions. If true, we would the
have an understanding of the origin of critical behavior in
very large class of physical systems. A proof of this is
progress.

FIG. 5. The normalized coefficientspn for b52 – 4. Thepn

represent the average number of closed loops per site of lengn
divided bymn.
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VIII. SUMMARY

We have proven a recursion relation for the coefficients
a class of polynomials of physical interest. Using that re
tion, we have developed a theory to calculate the numbe
closed-loop self-avoiding walks on the Sierpinski gas
family of fractal lattices and found good agreement betwe
the measured values of the amplitudes and those predicte
the theory. Finally, we have discussed how, for a class
systems, the characteristics of their critical behavior can
tied directly to the behavior of the polynomial coefficients
represented by the recursion relation.
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FIG. 6. The normalized coefficientspn divided byna23, for b
52 – 4. The plots are for a single period. By dividing by the exp
nential term we can see clearly the details of the log-periodic
havior.
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APPENDIX A: RATE OF CONVERGENCE

An important issue is the rate of convergence of the
cursion relation. From the proof it is clear that the recurs
relation will converge more quickly the greater the value
l. How the value ofl depends on the other fixed points
the polynomial becomes clear if we represent the polynom
as f (x)5g(x)1x; the roots ofg(x) are the fixed points of
f (x). Representingg(x) as the product of its roots,

g~x!5~x2xc!~x2x1!~x2x2!~x2x3!...~x2xn!,

we can then represent the eigenvalue atxc as

l5
d f~x!

dx U
xc

5
dg~x!

dx U
xc

11

5~xc2x1!~xc2x2!~xc2x3!...~xc2xn!11.

If there is more than one root ofg(x) at xc , thenl51 and
the recursion relation is not true. It is then interesting
consider polynomials the fixed points of which approach
fixed point that represents the critical point. Consider
polynomial

f ~x!5
x2n111xn11

2
,

which hasn fixed points~including x51) on the unit circle,
n complex roots on the circleuxu52, and one root atx50.
One might expect that asn increases and other fixed poin
approach the fixed point atx51 arbitrarily closely, thatl
would approach 1. In factl5(3n12)/2 and increases as th
number of fixed points increase; so closeness of other fi
points to the critical point does not in itself imply slow con
vergence. Figure 7 illustrates the fast rate of convergence
n54 (l57).

A polynomial, which does exhibit slow convergenc
whend is small, is

f ~x!5
~11d!1x2

21d
,

which has fixed points atx51 andx511d. Choosing the
critical point to bexc511d, we find the corresponding ei
genvalue atxc ,

l5
2~11d!

21d
.

Figure 8 illustrates the slow convergence in the cased
50.1 (l51.04762).

APPENDIX B: SUM RULE PROOF

Let F be a rational function,

F~x!5

(
n

anxn

(
m

bmxn

,

-
-
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FIG. 7. The normalized coefficientsan
(r ) for

iterations ofF(x)5(x51x9)/2 for r 52,3. Note
the very fast convergence (l57).
f-
e

where

F~xc!5xc .

DefineS(F) as the ratio of the sum of the normalized coe
ficients ofF to the sum of the normalized coefficients of th
denominator ofF. That is,

S~F ![

(
n

anxc
n

(
m

bmxc
m

.

Then we will show that, if

F ~r !~x!5

(
n

an
~r !xn

(
m

bm
~r !xm

,

then
S~F ~r !!5xc .

The proof follows directly from the observation thatSof any
rational function is simply the function evaluated atx5xc .
Then,

S„F~F !…5

(
n

an„F~xc!…
n

(
m

bm„F~xc!…
m

5

(
n

anxc
n

(
m

bmxc
m

5xc .

The fact thatS(F (r ))5xc follows by induction.

APPENDIX C: DERIVATION OF P„x…

Here we show that generally if

pn5mnnaf S ln~n!

ln~l! D ,

wheref has period one, then forx less than and close to 1/m,

P~x![ (
n50

`

pnxn5

f S ln~12mx!

ln~l! D
~12mx!12a . ~C1!
FIG. 8. The normalized coefficientsan
(r ) for

iterations ofF(x)5(11x2)/4 for r 52 – 7. Note
the very slow convergence (l51.05).
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Substituting in Eq.~C1! and expandingf in a Fourier series,
we have

P~x!5 (
n50

`

~mx!nna (
m52`

`

ame2p im
ln~n!

ln~l!

5 (
n50

`

~mx!nna (
m52`

`

amn@2p im/ ln~l!#

5 (
m52`

`

am(
n50

`

~mx!nna1@2p im/ ln~l!#.

For x near 1/m, keeping the leading singular term, we hav
P~x!5 (
m52`

`

am

1

~12mx!12$a1@2p im/ ln~l!#%

5 (
m52`

`

am

~12mx!@2p im/ ln~l!#

~12mx!12a

5
1

~12mx!12a (
m52`

`

ame@2p im ln~12mx!/ ln~l!#

5

f S ln~12mx!

ln~l! D
~12mx!12a .
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