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Coefficient scaling
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We prove a remarkably simple but powerful recursion relation for the coefficients of iterated polynomials.
We also prove that the recursion relation holds for the coefficients of certain functions of the iterated polyno-
mial. Using the recursion relations, we obtain a closed-form expression for the average number of closed-loop
self-avoiding walks per site on a family of fractal lattices. We describe numerical results, which exhibit
log-periodic oscillations, and find good agreement between these results and the theory developed here, which
predicts the existence of the log-periodic oscillations and their amplitudes. Finally, we discuss insights gained
into the mathematical origins of critical phenome[81063-651X%99)10704-9

PACS numbe(s): 64.60.Ak, 61.43.Hv, 05.70.Jk, 02.10.Eb

I. INTRODUCTION d

N=g FOO| >1.
Recursion relations involving polynomials or rational Xc

functions play a major role in a number of branches of phys- ] . )

ics. In many cases, the function involved is the renormaliza¥Ve define therth iteration ofF(x) as

tion group transformation applicable to the system being in-

\{estigatgd[l]. Usually this fu_nction i; Iingarized aroqnd a F“)(X)EZ agr)XnEF(F(r—l)(X)). 2.2

fixed pointx. and the recursion relation is then applied to

this linearized equation. In doing this, information which is

needed to calculate the amplitudes of the quantities exhibit/Ve Wil prove that for larger,

ing critical behavior is lost. Also there are situations in which

. . . . . . -1
the linearization results in unphysical divergences. ﬁ)_ l ag/x : 23
We have discovered and proven a recursion relation for ut N ,u”7 : 2.3

the coefficients of iterated polynomials. Using this recursion

relation, we formulate an approach to calculating physicalwe call this property coefficient scaling. In what follows we
observables which exhibit critical behavior; the approachwill refer to the coefficients of a polynomial divided hy"
employs the coefficients of the renormalization group transas normalized coefficients. Whewi\ is not an integera,,
formation function as opposed to the function itself. Thiswill be understood to be an interpolated value. Alsds (k)
approach has no divergences and allows the amplitudes @f a function odd or even im, the recursion relation is un-

the critical quantities to be calculated straightforwardly.  derstood to apply to the nonzero odd or even terms of
In Sec. VI, we use this technique to study the critical (1) (x).

behavior ofp,, the average number of closed-loop self-
avoiding walks per site on the family of Sierpinski gaskets.
Finally, we discuss how the properties of polynomials can
be used to understand the mathematical origins of critical The proof will proceed by(i) deriving a closed-form ex-
phenomena. pression for the derivatives & (x) at x., (i) deriving a
closed-form expression for thgh moment of the normalized
coefficients, and(iii) showing that the corresponding mo-
ments of the normalized coefficients’=a{"/u" andq("

A. Approach

IIl. RECURSION RELATION

Consider a polynomial of degreel, =\l Y/u™, are equal.
2 N B. Behavior of jth derivative
F(x)= apXx', 2.1 . . . L
(x) no " @ Using the chain rule of differentiation, we see that

: . - N . d d
with non-negative coefficients, with fixed poirt>0, de- AND=—(F"(x))| =rx—=F"V(x))
fined by F(x;)=X., connectivity constantu=1/x,, and dx X¢ dx Xe
corresponding eigenvalue

and then by induction that
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d? d ‘a
(N= (1 = (r-1 — (E(r—-1) (E)= j—"n

o=ge W] dX[F(F (NG ETH| Mj(F)=2 n"75.

pr 1 d? . We will show that for larger and polynomials for which

=N YN S5 (FTH(X)), IN[>1,
. . j
whereo=d?F(x)/dx?, and by induction, Mj(F(r))Ich(f—XI(F(r)(X)) _ (2.5
r-1 (1_)\2—r) Xe
(X) = 5\ 2r -n_ y2r— " 7
o= oA nzz)\ oA ANA—D1) Consider

Since|\|>1, we have, for large, a
| | g W(F(r)(x))
X

O_)\Zr c
O'(r):—
AA—1) an
max .
Proceeding as before, we have, after some algebra, = 20 [n(n—1)(n=2)...(n—j+1)]ay’'x} "’
=
3 2y 2(r—1)
T(r)E%F(r)(X) =3 by 30’)\)\—1)\-1-)\7“_1), ,agf)ﬂx
X x (A—1) =x1 > [n(n—1)(n—2)...(n—j+1)]al'x"
n=0

wherer=d3F(x)/dx3. For larger, we can ignore the second

ML EM (EM
term and this recursion relation simplifies to Xo IMj(FT) + OMy< (FT))].

A= \3=1) 4 Ar-1) Using Eq.(2.4), we have
By induction, M;(F™)=kj(xc\")) = O(M < (FM))]. (2.6
D= NS (N3N 5+ N T+) =ka\ ¥, For j=1, there are no moments of lower order than Eq.

(2.6) so we can ignore the last term.
wherek; is a constant the value of which will not be impor- ~ We can then proceed by induction and, for each succes-

tant to us. sivej, ignore the terms containing moments of lower order in
Looking at the structure of the equations above, we seg because they will be proportional to lower-order deriva-
that for arbitraryj, tives. Thus, for alj,
d d . d! _
&]—(F(”(x)) =| g (FO)) N Mj(F(r))IXJc&I(F(r)(X)) =kj(xAD)L (27
XC XC XC
. d
+O()\('_1>(r_1))+)\d—xj— FUY(x)| . D. Proof of recursion relation by equating moments
Xe The last step of the proof is to show that all moments of
Ignoring the terms of lower order x, we have by induction, 2
n
gi _ pﬁ”E F
&I(F(r)(X)) ijAJr, (24)
X are equal to the respective moments of
where thek; are constants. 1alr-b
This intermediate result in the proof is interesting in its g)E_%_'
: : \
own right. If we define M

i

d As noted earlier, i (x) is odd or even irx, it is understood
D(f,j)E(&) FO(x)
j

) that we are proving the equality for the odd or even terms.
Xe This, the requirement that all coefficients B{x) are non-
negative, and the requirement that the degreE f greater
than 1 ensures that andq"’ are smoothly varying func-

we see thaD(r,j) scales in the sense that

. . i i 3 (r)
D(ar,Bj)=(D(r,j))*. tions of n. Consider thgth moment ofg'",
Lag,”
C. Behavior of the jth moment M(q™)=2 nJX —
n

We denote thgth moment of the normalized coefficients
a,/u" of F as defined in Eq(2.1) as Substitutingm=n/\ yields
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FIG. 1. The normalized coefficien@ for iterations ofF(x)
=x2+x3 for r=2-5.

1
Mj(@)== >

Because the function being summed over is smooth, we can

(r=1)
m

(M) ——.
: s

N m=0l 1N, ..

keep only IX of the terms and multiply by. Then,

Using Eq.(2.7), we have

(r-1)
H m i —
Mj(q)=2 (m\)—F—=NM;(p D).
m M
|
2
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M;(g™) =Nk (XA ™D =K (xA ) =M;(p™).

Thus we have shown that the respective moments of the two
functionsp{" andq(" are equal and, therefore, the functions
are equal. That is,

ay' _lap,
ptooN M

Defining@= aﬁ{’/,u”, we have by induction fory<r,

1\ fo———
n_|= (r=ro)
ay = ) Aoty (2.9

A

which we will use in Sec. VI.
In Appendix A, we discuss the rate of convergence of the
recursion relation.

lll. EXAMPLES

In Figs. 1-3, for some simple functions, we plot the nor-
malized coefficients{"/." for multiple r. We see that each

succeeding plot is lowered in height byAldnd stretched by

a factor of\; the “area under the curve” stays constant. As
we will see below, this simple geometric property of an iter-
ated polynomial when the polynomial is the renormalization
group transformation function explains the exponential be-
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FIG. 2. The normalized coefficien@ for iterations ofF (x) = (1+x%)/4 for r=3-8.



4850 GERALD PAUL PRE 59

1.6 0.6
i': r=2 0.5/ *=3
E: 1 En 0.4
w 0.8 w 0.3
0.6 0.2
g'g 0.1
2 4 6 8
1 2 3 4 4
0.35 0.3
0.3} =4 0.25 r=5
0.25 0.2
k, 0.2 !igo 15
% 0.15 o Y-
i 0.1
0.1
0.05 0.05
2.5 5 7.5 1012.515 5 10 15 20 25 30
n n
0.3 0.3
0.25 r=6 0.25 r=7
. 0.2 ~ 0.2
u O
w 0.15 g 0.15
0.1 0.1
o.osM 0.05
10 20 30 40 50 60 20 40 60 80 100 120
n n

FIG. 3. The normalized coeﬁicien@ for iterations ofF (x) = (1+0.5x+x?)/4 forr=2-7.

havior and log periodic oscillations of critical phenomena.
The fact that the area under the curve stays constant has to P(X)=H(F(x))=2, px"
be the case since "

(I’) r n.
& POOO=HF"(x)=2 p'x™

n M

is true for allt, not just forr=0, in which case it is the them
definition of the fixed point. For higher, the equation is a

r (r=1)
sum rule, which constrains the normalized coefficients. The pL: 1 P _ (4.1)
proof of this sum rule is given in Appendix B where we wh N ™

prove a more general sum rule for the normalized coeffi- _ _ o o
cients of rational functions of which polynomials are a spe-To prove this, we first show that B+ andG("* ) are two
cial case. polynomials whose coefficients obey H@.3), then the co-

efficients of (F(x)G(x))(" obey Eq.(2.3). That is, if
IV. SCALING PROPERTIES OF POLYNOMIALS
OF POLYNOMIALS W(X)EF(X)G(X)EE ann,
n

In this section we will show that if the coefficients Bf"
scale as in Eq(2.3), then the coefficients of polynomials of
F( also scale in accordance with H.3). That is, ifH is a WO (x)=FO(x)GM(x)= D> wi wixm;
polynomial, n

then,
HOO=2 hox"
n

and Mn :X n’x - (4.2)
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Now,

W(nr)_E f(r) (r> — nz — g”f'

(r 1)
|/>\

(r=1)
Iin-in

1
=p )\22 LR

Substitutingj =i/\, we have

a1 1

wy'=u w2

S gl

g i
—OMNAN.. WA=

Knowing that the polynomials are smooth, we can convert

the sum to a sum over integers by keeping only a&f the
terms and multiplying bw. Then,

1 1 1wl
1) 1) n/\
Wg) )\ — z f(r ggf/)\ J UHXT’

which proves Eq(4.2). The proof of Eq.(4.1) follows di-
rectly. By induction, from Eq.(4.2), powers of a function
that scale as in Eq2.3) also scale as in Eq2.3). Clearly,
multiplication of a function by a constant maintains E2.3)
and sums of products that satisfy Hg.3) also satisfy Eq.

(2.3). Therefore polynomials of functions that satisfy Eq.

(2.9 also satisfy Eq(2.3) and Eq.(4.1) is proven.

V. IMPROVED APPROXIMATION TO F(®(x)
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FIG. 4. Comparison of (x)=x?+x3, its best monomial ap-
proximation f(x), and its linear approximatiorF e, near x
=X . As shown in(a), nearx., F(x) andf(x) are basically coin-
cident. In(b), for larger|x—x|, F(x) andf(x) diverge butf(x) is

We can use the coefficient scaling relation to derive atill & significantly better approximation thafjinear, Which would

better approximation than the linear oneRE(x) nearx,.
Using Eq.(2.3), we have

n

1 M 1
FO(x)= X; s amn x
Letting m=n/\, we have

(ux)*

FO(x)=— ! (
N m=0NSTI 2N, M

m
) all" v,

For x nearx., the summand is slowly varying and we can

be coincident with the axis, if plotted.

eigenvalue\, our approximation is unique. Also, the ap-
proximation has derivatives as in E.4). We also note that
this approximation is not valid for<<O where for noninteger

\ the results are not real. This approximation is a significant
improvement over the linear approximation as seen in Fig. 4.

VI. APPLICATION TO CRITICAL PHENOMENA
A. Closed-form solution

We will apply coefficient scaling to the statistics of self-

convert the sum to a sum over integers by keeping oMy 1/ ayoiding walks on a family of fractals. In particular, we will

of the terms and multiplying b%. We then have

0= (W) v o )

Defining
(o= (5.
we have by induction
FO(x)=f"(x)= M. (5.2

study the statistics of the average number of closed loops per
site on the family of Sierpinski gaskets characterized by the
length b of the side of the generating figure. Using
renormalization-group theory, this family of fractals has
been analyzed by DhdR] for b=2 and for higherb by
Elezovicet al.[3] to calculate critical points and critical ex-
ponents. We will use coefficient scaling to show how addi-
tionally the amplitudes can be calculated.

From[3], the average number of closed loops of length
per site, is given by the coefficiengs, ,, of Py(x), where

Gu(TH(x
Py(x) = Z ™ r+1

2 pbnx

(6.9

At x=x., f(x)=x, as it should and the eigenvalue of this wherek,=b(b+1)/2, Gy, is a polynomial of degre&,, T,
approximation is stillh. We note that if we desire a mono- is the renormalization-group transformation function for the
mial approximation toF(x), which has fixed poink, and system and is a polynomial of degr&g with fixed point
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Xcp, CONNectivity constani,=1/X;, and eigenvalue,,
and T =T, (TU"Y).  For simplicity, theb subscripts will
be understood in what follows.

We then have

G(T"(x))
kr+l

(GTI(x)),

T (6.2

el 3,55 -2

=0 r=0

where(F(x)), denotes theith coefficient ofF(x).
Choosing an integer,,>1, such that Eq(2.8) holds, we

separate the sum into two parts:

LN (T ) Mg

(G(T),
po= 3, et (
r=0

kr+1

r=ro

SinceG andT are polynomials of degrele the maximurm
to which the first sum can contribute ig=k'o. Thus, for
n>ngy, we can drop the first sum. Then, defining

— G
Gn=,u—2, (6.33
—p

pn=M—2, (6.30

and using Eq(2.8), we have

S ( ) 0 GTT)nr o

r+1
r=rq k

We will follow the approach of Derrida, DeSeze, and ltzyt-

son[4] in analyzing a function of the form of Eq6.2) but

we will analyze the coefficients as opposed to the function

Thus we perform a Mellin transform gpy, yielding

m(s)= J ns1p,dn
0

10 (G(T0)) a1
:J 512() ((err)I/)\ dn

Substitutingn for n/\"~"o for eachr we have,

( S 1)r
kr+l an.

(6.9

(G(T))ns 1>

r=rg

m($)=(>\r°)1fsf

The sum can be performed exactly and we have

1 (= (G(T), 1

G(s)
krofl k_)\sfl dn=

m(s)=
where we've defined
G(s)= f (G(T0))),n>"tdn. (6.5
0

Taking the inverse Mellin transform, we have

GERALD PAUL
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~ J d 1 fﬂw G(s) .
Pn = o4 m(s) S= 2miko I k-1 S.

The integrand has poles at

_In(k) 1 27-rim_ bi 0414243
_In()\)+ +|n()\)—a+m i, m=0,x1%+2*3,
where
_In(k)+1 2w
"oy T Ty

Using the residue theorem to evaluate the integral and using
Eq. (6.3b, we have

G(a+mci)
a+mC|) kfo~ lk |n()\)

,U«Z

0

:Mnnfa E efzwim[ln(n)lln(x)]
m=—o

G(a+mci) 66
k'o-1kIn(\) - 6.6
The amplitudes of the Fourier contributions to the normal-
ized coefficients are then

G(a+mci)

Am:m. (67)

The conventional representation fog is
pr=u"n% 3(constant-correction termg

Comparing with Eq(6.6), we find a=2—In(k)In(\), which
is consistent with earlier worl2,3]. In Appendix C, we de-
rive the formula corresponding to E¢6.6) for P(x).

We note that, while we are addressing the statistics of
self-avoiding walks on fractals, Eq&6.6) and(6.7) apply to
any observable represented by E§.1), as long aﬁ(s) is
analytic within the contour of integration. If it is not, Egs.
(6.6) and (6.7) must be modified to take this into account.
For the system we are studying, sinGeand T are polyno-

mials, G(s) is well behaved in the contour of integration.

B. Theoretical values for the amplitudes

The theoretical values of the amplitudes, K§.7), are
obtained by calculatingT("?),, recursively, calculating the
coefficients of G(T("0), creating an interpolated function
from the coefficients, and then integrating the interpolated
function in accordance with E@6.5). The results are shown
in Table I.

C. Numerical results

Numerical results were obtained by recursively calculat-
ing the coefficients off(") and then calculating the coeffi-
cients of G(T(") for eachr and summing the results. The
calculations were performed on a personal computer with a
233-MHz Pentium processor and 32 megabytes of memory
and were accomplished on the order of minutes to hours. We
obtained numerical results for, for b=2-4. The results are
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TABLE I. Theoretical and measured values for the amplitullgsf the Fourier transform components
of p,, the average number of closed-loop self-avoiding walks on the Sierpinski gasket with length laf side
for b=2-4. The value of used in the theoretical calculationrig; r, is the number of iterations that were
used to generate the sequence of self-avoiding walks, the amplitudes of which were measured.

Amplitudes
ro Longest
b Result type Mm walk Ay Aq A, A, A, As
2 Theory ro=4 81 .3656 .2036 .03067 .002052 .0007960 .0002875
measured r,=14 49152 .3657 .1951 .02659 .001457 .0003873 .0001036
3 Theory ro=3 216 4339 .1312 .1447 .060 02 .007 753 .004 958
measured  r,,=9 59049 4180 .1236 .1319 .05150 .006 985 .004 213
4 Theory rg=2 100 4661 .1413 .1185 07172 .063 28 .024 58
measured r,=6 12288 .4304 .1244 .1050 .06294  .046 26 .01565

shown in Figs. 5 and 6. Note the well-defined periodic oscil-denominator in rational functions. If true, we would then
lations and the subminima and submaxima indicating signifihave an understanding of the origin of critical behavior in a
cant higher harmonics fdr=3—4. To obtain the amplitudes, very large class of physical systems. A proof of this is in
we then created an interpolated function frgmp and per-  progress.

formed a Fourier transform on the last period of the function.

The results are shown in Table I.

D. Comparison of theory with numerical results 10-2

Table | compares the theoretical values obtained using the T
lowest reasonable, with the values obtained from the long- 1074 S _,/\
est calculation ofp,,. We see that we get good agreement nf
between the theoretical values and numerical values for the 10-5 E
amplitudes even though, is considerably lower than the
value ofr used to calculate the amplitudes numerically. Also
we see that, while the amplitudes drop off in magnitude
quickly for b=2, higher Fourier components are significant 10
for b=3 and 4, where the higher harmonics are present.

1078

100 1000

VII. MATHEMATICAL ORIGINS OF CRITICAL
PHENOMENA

b=3
If we review the derivation of Eqs6.6) and (6.7) we 1074
realize that the general form depended on two facta) the

well-known form for the sum of a geometric series 10-6

108

10 100 1000
n

used to evaluate E@6.4), which led to the poles im(s) and

the corresponding exponential behavior, ghithe scaling

of the polynomial coefficients, which allowed the sum in Eq.
(6.2 to be converted into a geometric series and which is the
source of theu" factor.

Thus, at least for systems which have polynomial
renormalization-group transformations and physical observ-
ables that are, or can be approximated by, sums of polyno-
mials of iterations of the renormalization-group transforma-
tion, we can now understand that the critical behavior is
directly related to the recursion relations for the coefficients
of the iterated polynomial. Thus, for the class of systems we
have described, critical behavior is a direct manifestation of
the mathematical properties of iterated polynomials. FIG. 5. The normalized coefficients, for b=2-4. Thep,

We believe that recursion relations similar to those forrepresent the average number of closed loops per site of length
polynomials hold for the coefficients of the numerator anddivided by "

10°2..

1074

e

|
10-¢

10 100
n

10°%

1000
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APPENDIX A: RATE OF CONVERGENCE

0.8
b=2 An important issue is the rate of convergence of the re-
m 0.6 cursion relation. From the proof it is clear that the recursion
tl’: relation will converge more quickly the greater the value of
~ 0.4 \. How the value of\ depends on the other fixed points of
| o the polynomial becomes clear if we represent the polynomial
0.2 as f(x)=g(x) +x; the roots ofg(x) are the fixed points of
f(x). Representing(x) as the product of its roots,
2.6 2.8 g(X) = (X—X) (X—X1) (X—X5) (X—X3)...(X—Xp),
logip[n] i
we can then represent the eigenvalugahs
0.8 df(x dg(x
be3 )\:():g()+1
- dx dx
L 0.6 X¢ Xg
g
\c. 0.4 :(Xc_xl)(xc_xz)(xc_xs)---(Xc_xn)+1-
[ o™
0.2 If there is more than one root @f(x) atx., thenx=1 and
’ the recursion relation is not true. It is then interesting to
consider polynomials the fixed points of which approach the
2.8 3 3.2 fixed point that represents the critical point. Consider the
logyo[n] polynomial
f( ) X2n+l+xn+1
X)=——F——
0.8 '
b=4 2
‘E 0.6 which hasn fixed points(includingx=1) on the unit circle,
£ n complex roots on the circlex|=2, and one root ax=0.
| pf 0.4 One might expect that asincreases and other fixed points
approach the fixed point at=1 arbitrarily closely, thai
0.2 would approach 1. In fagt=(3n+2)/2 and increases as the
number of fixed points increase; so closeness of other fixed
2.8 3 3.2 points to the critical point does not in itself imply slow con-
logyo[n] vergence. Figure 7 illustrates the fast rate of convergence for
n=4 (\=7).

_ L — B A polynomial, which does exhibit slow convergence
FIG. 6. The normalized coefficients, divided byn®~3, for b when sis small. is

=2-4. The plots are for a single period. By dividing by the expo-

nential term we can see clearly the details of the log-periodic be- (1+8)+x2
havior. f(x)= “ors
ViIl. SUMMARY which has fixed points at=1 andx=1+ 6. Choosing the

We have proven a recursion relation for the coefficients o]crmcal point to bex;=1+ 4, we find the corresponding ei-
a class of polynomials of physical interest. Using that rela_genvalue e,
tion, we have developed a theory to calculate the number of 2(1+96)

closed-loop self-avoiding walks on the Sierpinski gasket =—Q.

family of fractal lattices and found good agreement between 2+

the measured values of the amplitudes and those predicted gure 8 illustrates the slow convergence in the case
the theory. Finally, we have discussed how, for a class ot 4 (\=1.04762).

systems, the characteristics of their critical behavior can be
tied directly to the behavior of the polynomial coefficients as .
represented by the recursion relation. APPENDIX B: SUM RULE PROOF

Let F be a rational function,

ACKNOWLEDGMENT 2 ax"
n
We would like to thank S. Milosvic for a number of F(x)= B
helpful discussions and for introducing the author to the area S b x"
m

of study. m
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20.075 e FIG. 7. The normalized coefficients,’ for
0.05 0.01 iterations of F(x) = (x5+x%)/2 for r=2,3. Note
0.025 0.005 the very fast convergence €7).
20 40 60 80 100200300400500600700
n n
where S(FM)=x..

The proof follows directly from the observation tHabf any
rational function is simply the function evaluatedxat x.. .
Then,
Define S(F) as the ratio of the sum of the normalized coef-
ficients of F to the sum of the normalized coefficients of the
denominator of~. That is,

F(Xc)=Xc.

;mmw ng

S(F(F))= = =X,
> buF(Xe )™ 2 by
> anx K K
n
S(F)=—. The fact thatS(F(") =x, follows by induction.
> byxf
m APPENDIX C: DERIVATION OF P(x)

Then we will show that, if Here we show that generally if

oA In(n)
pn:Iu’ n f In()\) ’
> alxn
n
FO(x)= n—, wheref has period one, then forless than and close tod/
bix™
Em: m (In(l—,ux)
- In(\)
P(X)=2, ppX"=———1=5". (C1)
then & P (1—px)*~2
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Ee 0.4 2 o 04 FIG. 8. The normalized coefficients\ for
0.2 ) iterations of F(x) = (1+x?)/4 for r=2-7. Note
) 0.02 the very slow convergence & 1.05).
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Substituting in Eq(C1) and expandingd in a Fourier series, 1
we have P(x)= E am T-{ar[2am/n(I T}
m=—o UX)
- In(n)
P(X)=2 (Mx)n 2 ane 27-r|m (1 MX)[me/In()\)]
n=0 In(\) = 2 1-a
m== HX)
= nnha [2im/In(\)] w
ngo (MX) n m:z—m mN = ;]._a 2 ame[ZwimIn(l—,ux)/In()\)]
(1—pux)" "L
— 2 amE (Mx)nna+[2wimlln()\)]_ . |I’](1—,uX)
e U Iny
For x near 14, keeping the leading singular term, we have C (l—px)tta
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